Análise linear de cascas com Método de Galerkin Livre de Elementos.
Classifique:
Autor: Costa, Jorge Carvalho
Acervo: (us) Universidade de São Paulo
Categoria: Mestrado
Resumo: O Método dos Elementos Finitos é a forma mais difundida de análise estrutural numérica, com aplicações nas mais diversas teorias estruturais. Contudo, no estudo das cascas e alguns outros usos, suas deficiências impulsionaram a pesquisa em outros métodos de resolução de Equações Diferenciais Parciais. O presente trabalho utiliza uma dessas alternativas, o Método de Galerkin Livre de Elementos (Element-Free Galerkin) para estudar as cascas. Inicia com a observação da aproximação usada no método, os Moving Least Squares e os Multiple-Fixed Least Squares. A seguir, estabelece uma formulação que combina a teoria de placas moderadamente espessas de Reissner-Mindlin à teoria da Elasticidade Plana e se utiliza da aproximação estudada para analisar placas e chapas deste tipo. Depois, expõe uma teoria geometricamente exata de cascas inicialmente curvas onde as curvaturas iniciais são impostas como deformações livres de tensão a partir de uma configuração de referência plana. Tal teoria exclui a necessidade de coordenadas curvilíneas e consequentemente da utilização de objetos como os símbolos de Cristoffel, já que todas as integrações e imposições são feitas na configuração plana de referência, em um sistema ortonormal de coordenadas. A imposição das condições essenciais de contorno é feita por forma fraca, resultando em um funcional híbrido de deslocamentos que permite a maleabilidade necessária ao uso dos Moving Least Squares. Esse trabalho se propõe a particularizar tal teoria para o caso de pequenos deslocamentos e deformações (linearidade geométrica), mantendo a consistência das definições de tensões e deformações generalizadas enquanto permite uma imposição da forma fraca resultante, depois de discretizada, por um sistema linear de equações. Por fim, exemplos numéricos são usados para discutir sua eficácia e exatidão.