Análise das bifurcações de um sistema de dinâmica de populações
Classifique:
Autor: Silva, Andre Ricardo Belotto da
Acervo: (us) Universidade de São Paulo
Categoria: Mestrado
Resumo: Nesta dissertação, tratamos do estudo das bifurcações de um modelo bi-dimensional de presa-predador, que estende e aperfeiçoa o sistema de Lotka-Volterra. Tal modelo apresenta cinco parâmetros e uma função resposta não monotônica do tipo Holling IV: $$ \left\{\begin \dot=x(1-\lambda x-\frac{\alpha x^2+\beta x +1})\\ \dot=y(-\delta-\mu y+\frac{\alpha x^2+\beta x +1}) \end ight. $$ Estudamos as bifurcações do tipo sela-nó, Hopf, transcrítica, Bogdanov-Takens e Bogdanov-Takens degenerada. O método dos centros organizadores é usado para estudar o comportamento qualitativo do diagrama de bifurcação.